
Learning Inverse Kinematics using Reinforcement Learning

Sahasrajit Anantharamakrishnan*1, Kenechi Franklin Dukor*2, Anuj Shrivatsav Srikanth*1

1College of Engineering, 2Khoury College of Computer Science at Northeastern University - Boston, MA 02115,
{anantharamakrishn.sa, dukor.k, srikanth.anu}@northeastern.edu,

Abstract

In this paper, we present a Reinforcement Learning (RL) ap-
proach to the problem of Inverse Kinematics (IK), which
involves controlling the end-effector of a 7 Degrees-of-
Freedom (DoF) robotic arm to enable it to reach a target posi-
tion. Our approach uses a policy gradient approach with non-
linear function approximators like neural networks. Three
major algorithms were investigated in this research (DDPG,
SAC and TD3 algorithms). In addition, we see the effect of
different reward structures in learning the optimal policy for
our chosen domain. We demonstrate the effectiveness of our
approach through experiments on a simulated robotic arm,
showing that our method is able to learn a policy that can
successfully control the arm to reach the target position.

1 Introduction
Robot Arm Control is a fundamental problem in robotics,
which involves finding the joint angles that result in a desired
end-effector pose. This is a challenging problem, especially
for robots with complex kinematic structures, such as re-
dundant or highly articulated robots. Traditional approaches
to inverse kinematics often require complex mathematical
equations, which can be difficult to derive and implement. In
addition, these methods can be sensitive to errors and may
not be able to handle certain scenarios, such as when the
end-effector pose is outside the robot’s workspace or at a
singularity.

In recent years, there has been increasing interest in using
deep reinforcement learning (RL) for robot control. These
methods have the potential to overcome some of the limita-
tions of traditional approaches, by enabling robots to learn
inverse kinematics in a more efficient and effective manner
which essentially involves allowing robots to learn from trial
and error, by receiving feedback on the quality of their ac-
tions. This enables robots to learn complex motion tasks in
a more efficient and effective manner.

In this paper, we present a method for learning inverse
kinematics using reinforcement learning. Our approach uses
a deep neural network to learn the mapping from the end-
effector pose to joint angles. We evaluate the performance

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the proposed method on a simulated robot arm and com-
pare it with stable baselines. The results show that the pro-
posed method is able to learn accurate inverse kinematics,
even in challenging scenarios where the end-effector pose is
outside the robot’s workspace or at a singularity. These re-
sults demonstrate the potential of reinforcement learning for
solving inverse kinematics in robotics.

One challenge in using RL for robot control is that it re-
quires a large amount of data and computational resources.
This can be particularly challenging for articulated robots,
which have complex kinematic structures and are therefore
difficult to control. In this paper, we present a method for
controlling articulated robots using deep RL.

2 Background
A general Reinforcement Learning problem involves the in-
teractions between the agent and the environment in a se-
quential way to learn the optimal behavior of executing a
certain task by maximizing the cumulative reward an agent
earns. The agent takes a step (by executing an action) in the
environment and incurs a reward for taking that action and
based on the rewards it receives, it continues taking actions
that will help achieve the goal in an optimal way.

Thus, Reinforcement Learning is a type of learning that
maps for each state in the environment the right action to
take in order to optimally execute a task.
The key components of any RL problem are:

• Environment: the physical world with which the agent
interacts and can perceive.

• Agent: The object of interest that interacts with the envi-
ronment.

• Reward: Scalar valued feedback given by the environ-
ment.

• Policy: Mapping between states and actions.
• Returns: The cumulative sum of rewards that the agent

receives from the environment from the start till the ter-
minal condition is achieved.

From Fig 1, an agent takes an action at a given state in the
environment, and based on the action taken at that state, the
environment returns a reward and a next state and based on
the next observed state, the agent then again takes an action
and this loop continues until the termination is reached. To

Figure 1: Agent-Environment Interaction in RL. (Sutton and
Barto 2018)

find the optimal policy we have to visit all the sets of ac-
cessible states that the agent can traverse in the environment
and all the sets of possible actions that the agent can execute
in those states. Thus, we fall into a confusion between which
actions to choose and about the dilemma of exploration vs.
exploitation, that is whether to take the action that gave the
best reward at a particular state or explore all the set of ac-
tions in that state that maximizes the return rather than the
immediate reward.

2.1 Markov Decision Process (MDP)
An MDP is a mathematical framework for modeling sequen-
tial decision-making in an environment with the goal of at-
taining a policy that maximizes some reward signal (Sut-
ton and Barto 2018). The policy is defined by π: a map-
ping from states to a probability distribution over the ac-
tions π : S → P (A). This is exactly what the RL problem
is also trying to achieve and hence in order to address the
RL problem we have to first solve a Markov Decision Pro-
cess (MDP). We model a Markov decision process with a
state space S, action space A = RN , an initial state distri-
bution P (S1), transition dynamics P (St+1|St, At), and re-
ward function R(St, At) and describe it using the four-tuple
(S,A, T,R) configuration, where S is the set of states the
agent may encounter, A is the set of actions available to the
agent, T is the transition function T(S′|S,A) describing the
probability of entering a new state S′ given that the agent is
in state S and takes action A, and R is the reward function
R(S,A) mapping state-action pairs to rewards. Using the
MDP framework, we can learn an estimation of an impor-
tant parameter called value function v∗(S) or q∗(S,A), that
is the expectation over the returns or the cumulative rewards
obtained by the agent under the optimal policy. These esti-
mates then help us select the best set of actions by greedily
choosing actions that have the highest value.

2.2 Policy Gradient Methods
Policy gradient methods rely upon parameterizing the pol-
icy using a set of parameters and then performing gradi-
ent ascent to learn the parameters. This method helps tackle
problems faced by traditional RL approaches like the lack
of guarantees of a value function and the continuous state
and action space. Policy gradient methods directly attempt
to learn the policy instead of learning value functions and
hence this helps directly find the optimal policy rather than

checking for the value function and then finding a mapping
between states and actions. In these methods, we train a non-
linear network to learn the preferences for all the actions that
can be taken from a given state and then based on the pref-
erences returned by the network we select an action using a
function like softmax. An extension of these methods is the
Actor-Critic method, where a separate network called Critic
utilizes the value function as a form of evaluation to evaluate
the parameterized policy that the Actor-network learns.

2.3 Experience Replay
In order to train our networks we need to sample transition
tuples from the MDP and use them to calculate the TD error
and perform Stochastic Gradient Descent (SGD) to update
our function parameters. The transitions that we observe are
highly correlated with each other but for SGD the train-
ing data should be Independent and Identically Distributed
(I.I.D). This violation can be resolved by storing the tuples
in a replay buffer and during training randomly sampling
tuples from this buffer ensuring independence between the
tuples. In essence, we are generating our labeled dataset via
experience and shuffling that data in how we sample from it.

3 Related work
Inverse Kinematics is a prominent area that finds application
in robotic research. In times past the field has experienced
various transitions in methods that work towards optimally
moving the joints of a robot to reach the desired target. Most
of these methods involved complex mathematical concepts
that required lots of computational power.

A well-known method used to solve inverse kinemat-
ics problems is the Jacobian Inverse IK Method (Merlet
2000). This is an old and powerful method widely used in
robotic research, however, the computational requirement
needed to successfully use this method is expensive. The
method used an iterative approach to find the joint configu-
rations (T), compute the change in rotation (dO), and lastly,
compute the Jacobian (J)

T = O + dO · h (1)

Where h is just a simulation step that can be tuned.
Another such method is Forward and Backward reach-

ing Inverse Kinematics (FABRIK) (Aristidou and Lasenby
2011). The method locates the individual joint position
through a point locating point on a line. It does so in fewer
iterations and with lesser computational power when com-
pared to the Jacobian method (Aristidou, Chrysanthou, and
Lasenby 2016).

Research continues in this area and improvements are
constantly being tested on different domain applications
in robotics. One recent improvement and extension to the
FABRIK algorithm is Continuum Robot Reaching Inverse
Kinematics (CRRIK) (Wu et al. 2022) which was inspired
by the physical process of pulling a rope with a fixed end,
which is straightforward and obvious, avoiding complicated
nonlinear operations. The CRRIK algorithm promises a high
convergence rate and low computational cost, which are
suitable for real-time applications.

One noticeable difference between the discussed ap-
proach to solving inverse kinematic problems in robotics is
the fact that computing inverse kinematics under conditions
of stability and self-collision avoidance cannot be done effi-
ciently in real-time.

In recent times as reinforcement learning began to
gain relevance in research, and methods have been pro-
posed to solve this problem of inverse kinematic control.
The reinforcement learning methods promise better learn-
ing for more complicated tasks with infinite observation
space(Phaniteja et al. 2018).

4 Project description
We describe the problem of solving the inverse kinematics
equation for a robot arm by controlling its position and mak-
ing the robot arm move to any desired location in a cube of
size 0.3 × 0.3 × 0.3m. The robot arm should reach the de-
sired position that is generated randomly at the start of each
episode with a tolerance of ±0.05m

4.1 MDP Formulation
• S - observation space that consists of the position of the

arm in the environment along with its speed and the de-
sired goal.

S = [x y z vx vy vz xg yg zg]

The first six variables represent the position and velocity
of the robot and the last three variables represent the goal
position.

• A - set of control actions that control the position of the
arm in three coordinates, one for each axis of movement
x, y, and z.

A = (x, y, z) ∀ x, y, z ∈ [−1, 1] cm.

• R - we have performed simple reward engineering and
set a dense reward that calculates the negative of the dis-
tance between the present robot arm position and the de-
sired position and assigns it to the reward function, and
a reward of +1 on termination that is reaching within
0.05m within the target location.

R =

{
−∥Xobs −Xgoal∥, if: ∥Xobs −Xgoal∥ ≥ δ

0, else: ∥Xobs −Xgoal∥ ≤ δ

Here, Xobs = (x, y, z), and Xgoal = (xg, yg, zg).
• T - The transition function is deterministic and the next

state reached depends on the action taken.

We can’t directly apply Q-learning to continuous action
spaces because in continuous action spaces finding the
greedy policy requires optimization at every timestep; this
optimization is too slow to be practical with large, uncon-
strained function approximators and nontrivial action space
(Lillicrap et al. 2015).

We thus have explored and implemented various actor-
critic methods that work well on continuous action spaces
and analyzed the performance of these algorithms and pre-
sented them in the results section 5.

4.2 Deep Deterministic Policy Gradients (DDPG)
DDPG is a model-free off-policy algorithm for learning con-
tinuous actions using the methods from Deep Q-Networks
and Deep Policy Gradients that learn a Q-function and a pol-
icy to iterate over actions. It employs the use of off-policy
data and the Bellman equation to learn the Q function which
is in turn used to derive and learn the policy. It uses an Ex-
perience Replay (buffer) and slow-learning target networks
from DQN.
The experience replay is used to train the network based on a
sample of observations rather than just a single observation
and as seen in the background section we need to randomly
sample to ensure the I.I.D condition for gradient descent.
Apart from an experience replay we use target networks and
perform a soft update on these.
Soft Update Equations:

θQ
′
← τθQ + (1− τ)θQ

′

θµ
′
← τθµ + (1− τ)θµ

′

The purpose of target networks is to encourage off-policy
learning and to update the targets toward the correct es-
timates. We periodically update these networks using the
weights from the behavior actor and critic using a hyperpa-
rameter τ without directly copying the weights and instead
synchronize them using the τ . We thus integrate the use of
replay buffers and a target Actor-Critic network to stabilize
learning, forming an off-policy variation of the Actor-Critic.
Here, we have used the Actor network to directly output the
value of the action rather than a preference for the actions.
DDPG outputs a deterministic policy, that is if a particular
state is passed into the Actor network over and over again
it outputs the same action value. To address this problem of
exploration vs exploitation we use a noise model called Orn-
stein Uhlenbeck noise and sample from this model to add
exploration to our problem.
The input to our Actor-network is the current observation of
the robot concatenated with the desired goal that is returned
from the observation space of the simulator hence the state
space is 9 dimensional, while its output is the action itself
and thus the actor returns 3 values in the range from -1 to 1
corresponding to control in each axis. The input to the critic
model is a concatenation of the state observation and the ac-
tion that the actor model chooses based on the state, while
its output gives the Q value for each action and state. The
Critic loss is given by the minimum mean squared error be-
tween the targets and the Q-values and we try to minimize
this error.

L =
1

N

∑
i

(yi −Q(si, ai|θQ))2

Actor loss is computed using the mean of the value given
by the Critic network for the actions taken by the Actor-
network. We seek to maximize this quantity and hence per-
form a gradient ascent to update the weights of the Actor-
network as shown in equation 2.

∇θµJ ≈
1

N

∑
i

∇a(s, a|θQ)|s=si,a=µ(si)∇θ
µµ(s|θµ)|si

(2)

4.3 Soft Actor-Critic (SAC)
Soft Actor-Critic, is an off-policy actor-critic algorithm that
is based on a maximum entropy reinforcement learning
framework. In the maximum entropy framework, the actor
aims to maximize the expected long-term reward while also
maximizing long-term entropy. In essence, for a task to be
completed successfully, it should act as randomly as possi-
ble (Haarnoja et al. 2018).

J(πθ) =

T∑
t=0

Eπθ
[R(st, at)] + αH(π(·|st))]

From the equation above, we see that the standard maxi-
mum reward objective is augmented with an entropy maxi-
mization.

Together with entropy, SAC combines off-policy updates
with a stable stochastic actor-critic formulation. We know
that the actor-critic is a combination of policy-based and
value-based approaches to the high variance experience
when policy-based methods are used alone.

In the SAC algorithm, there are three networks. The state-
value network (V) is parameterized by ψ; the policy func-
tion that parameterized by ϕ; and the soft Q function is pa-
rameterized by θ.

The state value function approximates the soft value, and
the soft value function is trained to minimize the squared
residual error.

JV (ψ) = Est∼D

[
1

2
(Vψ(st) − Eat∼πϕ

[Qθ(st, at)

− log πψ(at|st)])2
]

The soft Q-function parameters are trained to minimize the
soft Bellman residual (given below) and further optimized
using stochastic gradient descent.

JQ(θ) = E(st,at)∼D

[
1

2

(
Qθ(st, at)− Q̂(st, at)

)2
]

And lastly, the policy parameters are learned by minimiz-
ing the expected KL divergence.

Jπ(ϕ) = E(st)∼D

[
DKL

(
πϕ(·|st)||

e(Qθ(st,·))

Zθ(st)

)]
SAC has proven to be an efficient algorithm for real-world

robotic problems and one of the advantages presented by
SAC is its ability to explore widely in an incentivized way
strategically. The algorithm also captures multiple modes of
near-optimal behavior. Also, the algorithm has an impressive
learning speed over state-of-art methods that optimize the
conventional RL objective function.

4.4 Twin Delayed Deep Deterministic Policy
Gradient (TD3)

Twin Delayed Deep Deterministic Policy Gradients (TD3) is
an algorithm for learning control policies in reinforcement
learning (RL) tasks. It is the successor to the Deep Deter-
ministic Policy Gradient (DDPG) (Lillicrap et al. 2015). It
is an actor-critic method that uses deep neural networks to
learn policies and value functions. It is different from DDPG
in these key features:

1. Two (Twin) Critic Networks: TD3 is similar to double Q-
learning, in using two separate target value functions to
estimate Q-value. This reduces bias, reduces overfitting,
and improves stability in the learning process. Moreover,
it takes a minimum over the Q-values generated from the
two critic networks, this creates an underestimation of
the Q-values which does not affect learning as much as
compared to overestimation of the same.

y1 = r + γQθ′2 (s
′, πϕ1

(s′))

y2 = r + γQθ′1 (s
′, πϕ2(s

′))

2. Delayed updates of the Actor Network: In an Actor-critic
method, when overestimation happens for a sub-par pol-
icy it snowballs and creates a terrible policy. This can be
shifting the update phase of the two algorithms i.e. de-
laying the update of the actor policy as compared to the
critic network.

∇ϕJ(ϕ) = N−1
∑
∇aQθ1(s, a)|a=πϕ(s)∇ϕπϕ(s)

3. Noise Addition: Small amount of clipped noise is added
to the actor network which reduces the variance in the fi-
nal policy and helps in exploitation. The equation (Fuji-
moto, van Hoof, and Meger 2018) below shows the noise
added to the action and subsequent clipping of both noise
and action.

a′(s′) = clip
(
µθtarg(s

′) + clip(ϵ,−c, c), aLow, aHigh
)
,

Where, ϵ ∼ N (0, σ)

5 Experiments1

Experiments were performed on a robot in navigation do-
mains with continuous action spaces and coordinate state
observations. We focus on exploring the performances of
three major reinforcement learning algorithms and evalu-
ate their performances against those recorded in (Gallouédec
et al. 2021).

5.1 Domain
We have briefly described the domain we explored. The
panda-gym environment, which uses the PyBullet physics
engine, was utilized. Panda-gym, an open-source library in-
tegrated with OpenAI-gym, allows smooth experimentation
of reinforcement learning algorithms.
The proposed environments also allow fast learning on
computers with limited computing capacity. The PyBul-
let physics engine allows the parallel simulation of several
scenes. Thus, the environments are compatible with learn-
ing methods that use multiple CPU cores. Tests show that the
environments are, on average 9.2% faster than their equiva-
lents developed on MuJoCo (Gallouédec et al. 2021).

5.2 Baselines
We compare the results of our implementation of SAC,
DDGP, and TD3 against the results obtained in the panda-
gym paper (Gallouédec et al. 2021). In this paper, we will
be considering the experiment on the PandaFetch domain,
where SAC, DDPG, and TD3 algorithms were also explored.

1GitHub: https://github.com/Sahas-Ananth/RL-FinalProject

Figure 2: Panda-gym Enviroment for PandaReach

Figure 3: Extract from (Gallouédec et al. 2021) for
PandaFetch domain with HER

5.3 Experimentation
Metrics Depending on the implementation, we record the
success rate and/or the average scores obtained for 70,000
timesteps and compare the performance of the three algo-
rithms (SAC, DDPG, TD3) in the same domain for both
sparse and dense reward structures.

The report shows results for our implemented algorithm
and stable-baseline implementation for the vanilla replay
buffer and hindsight replay buffer. The plots for our result
were averaged over 100 episodes.

Result - Sparse Rewards The agents’ performance on
stable baseline implementation of the algorithm is shown in
Fig 4 for the hyperparameter recorded in Table 1. We ob-
served a significant positive success rate of 98% to 100%
for the three algorithms. However, we see a smoother learn-
ing curve of success rate and mean reward in TD3 and SAC
when compared with DDPG. This is suspected to be a re-
sult of the better exploration features of SAC and TD3 that
allows the model to find an optimal path faster. However,
when this result is compared to the result from our baseline
(Gallouédec et al. 2021) we see differences in the behavior
of the SAC algorithm. In contrast to our result, the SAC al-
gorithm (according to the paper) did not perform as well as
TD3 and DDPG for the same hyperparameter setup. While
it is still unclear why there is a difference in the results, we

suspect the issue may emanate from domain versions and
updates.

Gamma 0.95
Tau 0.005
Learning rate 1e-3
Batch size 2048
Total training timestep 70,000
Buffer size 100,000
Network Arch 3 hidden layer (512), 2 critic

Table 1: Hyperparameters for Stable-baselines with HER
and Sparse Rewards.

Figure 4: Results from Stable-baselines with HER and
Sparse Rewards. Left: Mean Rewards Right: Success Rate

Metrics DDPG SAC TD3
Actor loss 0.164 0.101 0.373
Critic Loss 0.00725 0.00476 0.0748
Mean Reward -2.09 -1.74 -1.83
Success Rate 98% 99% 100%

Table 2: Results for Stable-baselines with HER and Sparse
Rewards.

We went further to try applying our implementation of
the algorithm (which does not have Hindsight Experience
Replay) on the same sparse reward domain and observed an
expected result where the agent could not learn. This agent
cannot path efficiently to the goal since it receives a reward
only when the goal is reached.

This result validates the usefulness of HER buffers in
sparse reward domains. Other methods, such as reward shap-
ing, could have been considered; however, there is a domain
knowledge requirement constraint.

Result - Dense Rewards The agents’ performance on sta-
ble baseline implementation of the algorithm is shown in
Figure 4 for the same hyperparameter recorded in table 1.

We observed an excellent success rate of 100% for the
three algorithms. We also see that a better actor and critic
loss was achieved compared to the sparse reward domain.
This is a result of the benefits of the dense reward structure
and the application of HER, which further improves perfor-
mance in learning.

Figure 5: Results from Stable-baselines with HER and
Dense Rewards. left: Mean Rewards right: Success Rate

Metrics DDPG SAC TD3
Actor loss 0.00861 0.182 0.213
Critic Loss 3.17e-06 6.51e-06 0.000113
Mean Reward -0.51 -0.593 -0.496
Success Rate 100% 100% 100%

Table 3: Results for Stable-baselines with HER and Dense
Rewards.

However, when our implementation of the algorithms
(without HER) was applied to the same domain with dense
rewards, a poor result was recorded, as you will see in Figure
6. This result was obtained after different permutations of
hyperparameters, which led to the final parameters we have
recorded in Table 4.

Gamma 0.99
Tau 0.005
Learning rate 1e-3
Batch size 100
Episodes 2000
Buffer size 128
Network Arch 2 hidden layers (256), 2 critics

Table 4: Hyperparameters for our implementation of the al-
gorithms without HER (Dense rewards).

To confirm that this behaviour is valid. We trained another
agent on the same domain with stable baseline implementa-
tion of the three algorithms, but without HER buffer and we
experienced a similarly poor result for the three algorithms.

6 Conclusion
This paper has successfully investigated the performance of
policy gradient algorithms (DDPG, SAC, TD3) on inverse
kinematics problems. More specifically, we have established
the usefulness of hindsight experience replay in learning the
optimal policy in the investigated domain. This is a signif-
icant add-on to the different algorithms since they all pro-
duced better results when HER was applied. We have also
seen the limitations of the DDPG algorithm with respect

Figure 6: Average score result from our implementation of
the algorithms without HER (dense rewards domain)

to sufficient and efficient exploration and the improvements
seen in the SAC and TD3 algorithms. While there were
recorded successes in the PandaReach domain, difficulties
were still experienced in learning the optimal policy in more
complex domains such as PandaPush and PandaPickand-
Place. Such domains still require complex hyperparameter
tuning and computing power.

References
Aristidou, A.; Chrysanthou, Y.; and Lasenby, J. 2016. Ex-
tending FABRIK with model constraints. Computer Anima-
tion and Virtual Worlds, 27: 35–57.
Aristidou, A.; and Lasenby, J. 2011. FABRIK: A fast, iter-
ative solver for the Inverse Kinematics problem. Graphical
Models, 73(5): 243–260.
Fujimoto, S.; van Hoof, H.; and Meger, D. 2018. Addressing
Function Approximation Error in Actor-Critic Methods.
Gallouédec, Q.; Cazin, N.; Dellandréa, E.; and Chen, L.
2021. panda-gym: Open-source goal-conditioned environ-
ments for robotic learning.
Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018.
Soft Actor-Critic: Off-Policy Maximum Entropy Deep Re-
inforcement Learning with a Stochastic Actor.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous
control with deep reinforcement learning.
Merlet, J.-P. 2000. Jacobian and inverse kinematics. 65–89.
Phaniteja, S.; Dewangan, P.; Guhan, P.; Sarkar, A.; and Kr-
ishna, K. M. 2018. A Deep Reinforcement Learning Ap-
proach for Dynamically Stable Inverse Kinematics of Hu-
manoid Robots.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, second edition.
Wu, H.; Yu, J.; Pan, J.; Li, G.; and Pei, X. 2022. CRRIK: A
Fast Heuristic Algorithm for the Inverse Kinematics of Con-
tinuum Robot. Journal of Intelligent & Robotic Systems,
105(3).

